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ABSTRACT 
The foundation of the theory of functionally graded plates with simply supported edges, under a 

Friedlander explosive air-blast,  are developed within the classical plate theory (CPT).  Within the development 
of the theory, the two constituent phases, ceramic and metal, vary across the wall thickness according to a 
prescribed power law. The theory includes the geometrical nonlinearities, the dynamic effects, compressive 
tensile edge loadings,and the damping effects. Also presented are the analytical expressions for the stresses, in 
which the results of which are not presented here. The static and dynamic solutions are developed leveraging the 
use of a stress potential with the Extended-Galerkin method and the Runge-Kutta method. The analysis focuses 
on how to alleviate the effects of large deformations  through proper material selection and the proper gradation 
of the constituent phases or materials. 

 
1. INTRODUCTION 

During combat situations, the structure of army military 
vehicles may have to structurally endure the effects of 
blast loading. Advances in functionally graded materials 
(FGM’s) which combine the properties of two dissimilar 
materials has been a motivating factor in viewing these 
types of materials as a viable alternative to the current 
isotropic metallic structures being utilized in the hull and 
armor plating. FGM’s are microscopically 
inhomogeneous with thermo-mechanical properties which 
vary smoothly and continuously from one surface to 
another. These graded structures allow the integration of 
dissimilar materials like ceramic and metals that combine 
different or even incompatible properties such as hardness 
and toughness. 

 
In this paper, the foundation of the nonlinear theory of 

functionally graded plate-type structures under an 
explosive air-blast is developed. An approximate solution 
methodology for the intricate nonlinear boundary value 
problem is devised, and results that are likely to 
contribute to a better understanding of the structural 
behavior, under an explosive  blast with beneficial 
implications towards their improved design and 
exploitation are presented. It is the author’s intent,  within 

this paper, to fill in some major gaps currently existing 
within the specialized literature.  
2. BASIC ASSUMPTIONS AND PRELIMINARIES 

The plate mid surface is referred to a cartesian 
orthogonal system of coordinates (x,y,z), while z is the 
thickness coordinate measured positive  in the upwards 
direction from the mid-surface of the plate with h being 
the uniform plate thickness and y is directed perpendicular 
to the x-axis in the plane of the plate. See figure 1 below.  

 
 
 
 
 
 
 
 
 
   
 
             
 
Figure 1: A simply supported functionally graded plate  

 Shown in 2-D,  under an explosive blast. 
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The nonlinear elastic theory of Functionally Graded (FG) 
Plates is developed using the classical plate deformation 
Theory [6]. It is also assumed that the FG plate is made-
up of ceramic and metal phases whose material properties 
vary smoothly and continuously across the wall thickness.  
By applying the rule of mixtures, the material properties 
such as Young’s Modulus, Density, and Poisson’s Ratio 
are assumed to vary across the wall thickness as  
 

                       zVPzVPzP mmcc  , (1) 
 
In which Pc and Pm denote the material properties of the 
ceramic and metallic phases, of the plate, respectively.  
 

      and       are correspondingly, the volume 
fractions of the ceramic and metal respectively, fulfilling 
the relation 
 

                                1 zVzV mc . (2) 
 
By virtue of (2), Eq. (1a) can be expressed as  
 
                     ( ) mcmc PzVPPzP +)-(=)( . (3) 
 

Two Scenarios of the grading of the two basic 
component phases, ceramic and metal, through the wall 
thickness are considered.  

 
Case (1): The phases vary symmetrically through the 

wall thickness, in the sense of having full ceramic at the 
outer surfaces of the plate and tending toward full metal at 
the mid-surface.  For this case,  
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Where the signum function, sgn(z)=1, z>0, 0, z=0, and -1, 
z<0. 
 
N  is termed the volume fraction index which provides the 
material variation profile through the plate wall thickness, 
       .  
 

Case (2): The phases vary non-symmetrically through 
the wall thickness, and in this case there is full ceramic at 
the outer surface of the plate wall and full metal at its 
inner surface. For this case,       can be expressed as 
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It should be noted that in contrast to case (2), where 

there exists coupling between stretching and bending, 
such coupling is not present for the symmetric case (1).  

Also, for the purposes of simplicity the Poisson’s ratio 
will be assumed to be constant throughout the plate 
structure.  
 
3. KINEMATIC EQUATIONS 

 
3.1 The 3-D Displacement Field  

Consistent with the classical plate theory [6], the distribution of the 3-D displacement quantities through the wall thickness can be expressed as 
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Within these equations,         are the 3-D 
displacement quantities along the         directions, 
respectively. While,               are the 2-D 
displacement quantities of the points on the mid-surface.  
 
3.2 NonLinear Strain Displacement  

Relationships 
The nonlinear strain displacement relationships across 

the plate thickness at a distance from the mid-surface take 
the form  
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Where, 
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In the above expressions,     
     

     
  , are referred to as 

the membrane strains and     
     

     
   are referred to as 

the flexural bending strains which are also known as the 
curvatures. 
 
4. CONSTITUTIVE EQUATIONS 

The stress-strain relationships for a state of plane stress 
is expressed as [10] 
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The material stiffnesses,                  are given by 
[9, 10] 
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The standard force and moment resultants of a plate are 

defined as 
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With the use of Equations (7) –(10), the stress resultants 
and stress couples are related to the strains by [3] 
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In which                   are the respective in-surface, 
bending-stretching coupling, and bending stiffnesses. For 
the case of symmetric FG Plates,      , since there is 
no bending-stretching coupling. The global stiffness 
quantities,                 , (i, j=1,2,6) are defined as 
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In view of Equations (3), (4), (5), (9), and (12), the 

global stiffness quantities are determined as 
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where  for the asymmetric case, 
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And for the symmetric case, 
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5. GOVERNING EQUATIONS 
Hamilton’s principle is used to derive the equations of 

motion and the boundary conditions. It is formulated as 
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Where          are two arbitrary instants of time.   
denotes the strain energy,   denotes the work done by 
surface tractions, edge loads, and body forces, and   
denotes the kinetic energy of the 3-D body of the 
structure, while   is the variational operator.  In Equation 
(16), the strain energy is given by 
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where    denotes the mid-surface area of the panel. The 
work done by external  loads is expressed as 
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In the above expression,         is the distributed force 

at the top surface        ,         is the distributed 
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force at the bottom surface         , 
    

      
    

     
   are the specified stress components 

along the plate edges, and         are the virtual 
displacements along the normal and tangential directions, 
respectively, along the plate edges. Considering only the 
transversal inertia of the structure, the kinetic energy is 
given by  
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Which implies that the variation in kinetic energy is 
expressed as 
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where      is the mass per unit volume.  
 
Considering Equation (16) in conjunction with Equations 
(17)-(20) , along with the constitutive equations (8), the 
strain-displacement relationships, equations (7), and 
carrying out the integration through the thickness, 
integrating by parts whenever feasible, using the 
expression of global stress resultants and stress couples, 
while retaining only the transversal load, transverse 
inertia, and transverse damping, invoking the arbitrary 
and independent character 
of variations 
                                          one 
obtains the equations of motion and as a by-product the 
boundary terms or conditions. This results in three 
equations of motion in terms of the global stress resultants 
and stress couples and  the four boundary conditions 
along the plate edges. These equations of motion and 
boundary conditions can be respectively expressed as 
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For the case of all edges simply supported and freely 
movable the boundary conditions are as follows: 
 

 xxxxxyxx NNNMw ,00  on 1,0 Lx   

            yyyyyxyy NNNMw ,00  on 2,0 Ly   (22) 
It should be mentioned for clarification sake that for 
compressive edge loading    
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6. AIR-BLAST LOADING 

 
With the ever increasing demands for increased safety 

for the solders in the field to operate structurally sound 
vehicles in the event of an improvised explosive device 
(IED) or some other type of explosive, it is imperative 
that an understanding of the structural response of various 
components within military combat vehicles under an 
explosive blast be understood so that measures can be 
taken from a design standpoint to ensure the durability 
and survivability of these components. To begin to 
achieve this understanding, the type of explosive loading 
considered here is a free in-air spherical air burst. Such an 
explosion creates a spherical shock wave which travels 
radially outward in all directions with diminishing 
velocity. The mathematical expression representing the 
incident blast wave from a spherical charge is given by 
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Where   
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    is the peak overpressure above ambient pressure,    is 
the ambient pressure,    is the time of arrival,    is the 
positive phase duration of the blast wave, and   is the 
time. The waveform shown in figure 4 is  
 

 In equations (23) and (24) Z is known as the scaled 
distance given by          with R being the standoff 
distance in meters and W  being the equivalent charge 
weight of TNT in terms of kilograms. Also,   is known as 
the decay parameter which is determined by adjustment to 
a pressure curve from a blast test.  

 
For the conditions of standard temperature and pressure 

(STP) at sea level, the time of arrival   , and the positive 
phase duration   , can  be determined from [4]  
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Where    represents either the arrival time or positive 
phase duration for a reference explosion of charge weight 
  , and   represents either the arrival time or positive 
phase duration for any explosion of charge weight  . The 
determination of the standoff distance for any charge 
weight W follows a similar reasoning. The application of 
these relationships is known as cube root scaling. It 
should be understood that in applying these relationships 
that the standoff distances are themselves scaled 
according to the cube root law.  
 
7. SOLUTION METHODOLOGY 

To satisfy the first two equations of motion, equations 
(31a,b), a stress potential will be utilized which allows the 
in-plane stress resultants to be  expressed by letting 
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The third equation of motion, equation (21c), can be 
expressed in terms of two unknown variables, the stress 
potential   and the transverse displacement    which 
results in 
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Where, 
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This gives one governing equation with two unknowns, 
        . One more equation is needed in terms of the 
same unknowns which will give two equations in terms of 
two unknowns which can then be solved. This will come 
from the compatibility equation. By eliminating the in-
plane displacements from the strain-displacement 
relationships, equations (7) the relationship between the 
in-plane strains and the transversal deflection known as 
the compatibility equation can be shown to be given by 
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Which, in terms of   and   , becomes 
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In equations (27) and (29),                   
where   is referred to as the Laplacian operator.  
 

Equations (27a) and (29) are the basic governing 
equations used to investigate the structural response of FG 
plates under external excitation loading. For the purposes 
of this paper, from this point forward, the thermal terms 
will be discarded. To this end, to solve equations (27a) 
and (29), the approach adopted from [2] will be utilized. 
In this respect, the following functional forms are 
assumed for          [2].  
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 (30a,b) 
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Where                              are the 
number of half waves in the x and y directions, 
respectively, and        is the amplitude of deflection. 
Also,                                  are 
coefficients to be determined. By substituting equations 
(50a,b) into equation 
(49), the coefficients 
                                    are determined as 
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By letting, 
 
                       yxtPtP nmmnt  sinsinsin  (32) 
 
And integratating both sides over the plate area gives 
 
   

             )1,1(),(,)(16)( 2  nmtPtP t
mn


 (33) 

 
and introduction of equations (30a,b) and (31) into 
equation (27a) and retaining the resulting equation along 
with the unsatisfied boundary conditions in the energy 
functional and applying the Extended Galerkin technique 
results in the following nonlinear differential equation 
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governing the structural response of FG plates, under 
external excitation.  
 
   

( ) ( ) ( ) ( ) ( )
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Ω++Δ2+ 32
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mnmnmnmnmnmnmnmn 
 

 (34) 
 
Where,        represents the amplitude of deflection of 
the plate as a function of time The expressions for 
                mnP~                         
  

Equation (34) is a nonlinear equation in terms of the 
plate deflections as a function of time. To obtain the plate 
deflections as a function of time, equation (34) is solved 
using the Fourth-Order Runge-Kutta Method. 

 
8. MECHANICAL STRESS ANALYSIS 

 
With the transversal deflections in hand, as a function of 
time, the plane stresses can be determined from the 
constitutive equations (8) with the use of the strain-
displacement relationships, equations (7) and the stiffness 
equations, equation (9) results in, 
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In order to determine the stresses, the expressions for 
00 and vu in terms of the transversal amplitude of 

deflection, )(twmn needs to be determined. These 
relationships can be determined from the global 
constitutive equations (11). Expanding equation (11) 
gives, 
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Solving Equations (36a,b) simultaneously for 
)0()0( and, yyxx  in terms of )1()1( and,,, yyxxyyxx NN  and 

utilizing equations (7) and (26) gives,   
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With the use of equations (13a-c), (30a,b), and (31) and 
integrating equations (37a,b), 0u and 0v can be 
determined. Having in hand, the expressions for 0u , 0v , 
and 0w , the expressions for the stress distribution can be 
determined from equations (35a-c). 
 
9. RESULTS AND DISCUSSION  
 

To illustrate the present approach, a ceramic-metal 
functionally graded plate consisting of Ti-6Al-4V and 
Aluminum Oxide with the following material properties, 
which were adopted from [9], were considered for the 
numerical results presented.  
 
     

2981.0,/kg 4429       GPa, 7.105

26.0,/kg 3750     GPa, 24.320
3

m

3
c





mm

cc

mE

mE




  

2791.0ave  
 

The geometrical properties used for the FG Plate are 
m11 L , 25.1== 21 LLψ , and unless otherwise stated 

m0254.0h  and the halfwaves, (m,n) = (1,1). In 
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addition, the following reference values, in Table 1. were 
utilized to determine the time of arrival and positive phase 
duration [5].    

 

        Table 1. Airblast Parameters Versus Distance  
        for a One Kilogram  1W  TNT Spherical Air  
        Burst [5]. 

Standoff 
Distance,    

(m) 

Arrival 
Time,    

 
(msec) 

Positive Phase 
Duration,    

 
(msec) 

1.0 0.532 1.79 
 

In Fig. 2 below, comparisons are made between the 
deflections of an asymmetric and symmetric plate. It can 
be seen that the deflections are a little out of phase with 
each other. Also, the symmetric FG plate has slightly 
lower deflections for a volume fraction index of 0.1. As 
can also be seen, that for a fixed amount of damping, the 
deflections are attenuated rather quickly. 
 
 

 
 
   In Fig. 3, It is shown for an asymmetric FG plate, that as 
the volume fraction index increases from a value of zero 
(fully ceramic) to a value of 10 (essentially fully metal) 
that the deflections increase then taper off as phases of the 
constituent materials approach fully metal. This shows 
that metal have higher deflections than the ceramic 
implying that the grading of the FG plate plays an 
important role.  
   In Fig. 4, which is the counterpart of Fig. 3 for a 
symmetric FG plate, reveals similar behavior. As 
mentioned earlier symmetric FG plates have lower 

deflections than asymmetric FG plates. Also, it can be 
seen that damping attenuates the deflections very rapidly. 
 

 
 
 
 
 

 
 
10. CONCLUDING REMARKS 
 

A rigorous treatment of functionally graded plates with 
grading in the transverse direction has been studied. It has 
been shown that damping has an important effect when it 
comes to the attenuation of the deflections. It has also 
been shown that the symmetry of the transverse grading 
throughout the structure plays an important role in the 
deflection-time history of the structure.  

Fig. 4. 

Fig. 2 
 

Fig. 3 
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From a design standpoint, it would be appropriate at this 
point to state that integration of functionally graded 
materials within plate-type structures would benefit the 
structural response of the structure. Also, it should be 
mentioned, although not shown here, that the choice of 
the ceramic and metal constituent materials chosen would 
also have a great impact on the response of the structure.  

The idea is to reduce the stresses within the structure 
concerned here. By reducing the magnitude of the 
deflections, the stresses are reduced. It is hoped and 
realized that this present study presented here will give 
insight into some of the factors that can play an important 
role in the structural response of functionally graded 
plates and fill in some of the fundamental missing gaps 
within this subject area. 
 
FUTURE WORK 
 
It should be noted that further work should and needs to 
be explored which would address comparing finite 
element blast modeling and simulation results with the 
current analytical results based on the theory of elasticity. 
This can be accomplished, by exploring the 
implementation of these analytical equations, as a user 
subroutine, in one of the applicable software tools.  
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